Analysis of human sodium iodide symporter gene expression in extrathyroidal tissues and cloning of its complementary deoxyribonucleic acids from salivary gland, mammary gland, and gastric mucosa.

نویسندگان

  • C Spitzweg
  • W Joba
  • W Eisenmenger
  • A E Heufelder
چکیده

The ability to concentrate iodide is a fundamental property of normally functioning thyroid tissue and represents the first step in the production of thyroid hormones. Iodide uptake has been demonstrated in various extrathyroidal tissues, including salivary gland, gastric mucosa, and lactating mammary gland. Recently, cloning and molecular characterization of the human sodium iodide symporter (hNIS) have been reported; however, the patterns of hNIS gene expression in human tissues have remained unidentified. To examine the profiles of human hNIS gene expression in various normal human tissues, we performed high-stringency Northern blot analysis using a 32P-labeled hNIS-specific complementary DNA (cDNA) probe (nucleotides 1184-1667). To detect rare hNIS transcripts in small tissue samples, RT-PCR was performed with a pair of hNIS-specific oligonucleotide primers designed to amplify a portion (nucleotides 1184-1667) of the hNIS gene. hNIS-specific transcripts were confirmed by Southern hybridization using a digoxigenin-labeled internal hNIS-specific oligonucleotide probe (nucleotides 1460-1477). To monitor cDNA integrity and quantity, and to rule out DNA contamination and illegitimate transcription, all samples were coamplified with two pairs of intron-spanning primers designed to amplify fragments of the human beta-actin and thyroglobulin genes, respectively. Using Northern blot analysis, hNIS transcripts of approximately 4 kb were detected in thyroid gland and parotid gland but not in a broad range of endocrine and nonendocrine tissues. RT-PCR and Southern hybridization revealed hNIS gene expression in thyroid gland, salivary gland, parotid gland, submandibular gland, pituitary gland, pancreas, testis, mammary gland, gastric mucosa, prostate and ovary, adrenal gland, heart, thymus, and lung. By contrast, hNIS transcripts were not detected in normal orbital fibroblasts, colon, and nasopharyngeal mucosa. To further analyze hNIS gene sequences in parotid gland, mammary gland, and gastric mucosa, the EXPAND High Fidelity PCR System and three sets of overlapping NIS oligonucleotide primers were used for amplification and cloning. The resulting PCR products were subcloned into pBluescript-SKII(-)vector, and at least two independent cDNA clones derived from each tissue were subjected to automated sequencing. The nucleotide sequences of hNIS cDNA derived from parotid gland, mammary gland, and gastric mucosa revealed full identity with the recently published human thyroid-derived NIS cDNA sequence. In conclusion, our results demonstrate markedly variable levels of hNIS gene expression in several extrathyroidal tissues. Although the physiological role of hNIS in these tissues awaits further study, our results suggest that the capacity to actively transport iodine may be a feature common to several secretory and endocrine tissues. The diminished capacity to transport and concentrate iodide in extrathyroidal tissues (such as parotid gland, mammary gland, and gastric mucosa), compared with thyroid gland, does not seem to be caused by an altered primary structure of the hNIS cDNA. Variability of NIS gene expression levels in normal extrathyroidal tissues may rather be caused by differences in NIS gene transcriptional activity. Further studies will address this hypothesis and examine the mechanisms of tissue-specific regulation of NIS gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of human sodium iodide symporter immunoreactivity in human exocrine glands.

The human sodium iodide symporter (hNIS) is an intrinsic transmembrane protein that mediates the active transport of iodide across the basolateral membrane of thyroid follicular cells. In addition to normally functioning thyroid tissue, various extrathyroidal tissues, including salivary gland, lacrimal gland, gastric mucosa, choroid plexus, and lactating mammary gland, have been demonstrated to...

متن کامل

Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology.

The Na(+)/I(-) symporter (NIS) is an intrinsic membrane protein that mediates the active transport of iodide into the thyroid and other tissues, such as salivary glands, gastric mucosa, and lactating mammary gland. NIS plays key roles in thyroid pathophysiology as the route by which iodide reaches the gland for thyroid hormone biosynthesis and as a means for diagnostic scintigraphic imaging and...

متن کامل

Sodium/iodide-symporter: distribution in different mammals and role in entero-thyroid circulation of iodide.

UNLABELLED The sodium (Na+)/iodide (I-)-symporter (NIS) is abundantly expressed and accumulates iodide in thyroid follicular cells. The NIS is also found in extrathyroidal tissues, particularly gastric mucosa. Controversies exist on the localization of extrathyroidal NIS. We have studied the presence of both NIS peptide and NIS messenger RNA (mRNA) in the digestive tract and thyroid from differ...

متن کامل

Sodium/iodide-symporter: distribution in different mammals and role in entero-thyroid circulation of iodide

The sodium (Na)/iodide (I)-symporter (NIS) is abundantly expressed and accumulates iodide in thyroid follicular cells. The NIS is also found in extrathyroidal tissues, particularly gastric mucosa. Controversies exist on the localization of extrathyroidal NIS. We have studied the presence of both NIS peptide and NIS messenger RNA (mRNA) in the digestive tract and thyroid from different mammals. ...

متن کامل

The Sodium/Iodide Symporter, Nitrate, and Dental Caries: A Perspective from a Review of the Literature

Nitrates have been used as an antimicrobial agent in foods for hundreds of years. As a result there is extensive literature on their mode of activity in the food sciences and other such diverse fields as gastroenterology, the pulmonary sciences, and cancer research but minimal research exists in the dental sciences. This manuscript will describe how nitrate present in green leafy vegetables is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical endocrinology and metabolism

دوره 83 5  شماره 

صفحات  -

تاریخ انتشار 1998